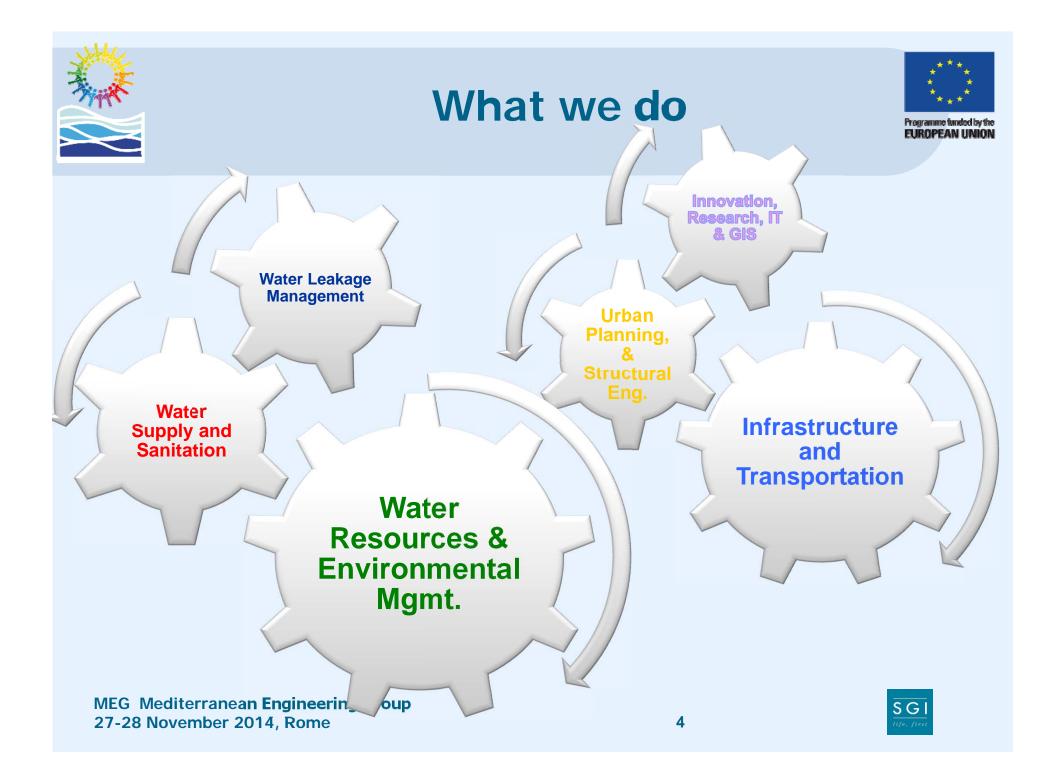

SGI Studio Galli Ingegneria SpA


Overview of the AQUAKNIGHT Project

Giorgio Galli, COO, SGI Studio Galli Ingegneria SpA giorgio.galli@sgi-spa.it

- Instrument: Cross-border Cooperation within the European and Partnership Instrument (ENPI)
- Duration: *3 years* (7 Dec 2011- 6 Dec 2014)
- Partners: 5 RTD, 5 End-users

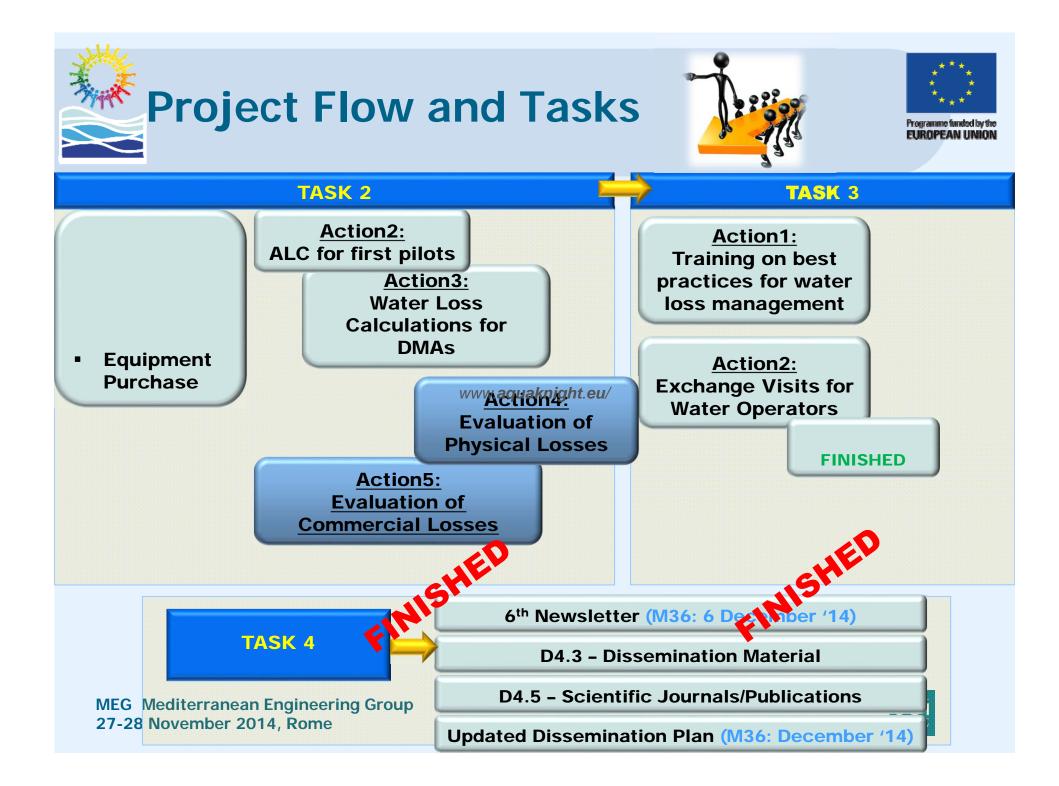
AQUAKNIGHT Consortium

No.	Partner Name	Acronym	Category	Role		
CO	Institute of communication and computer systems	ICCS	Research Institute	RTD		
1.	SGI Studio Galli Ingegneria S.p.A.	SGI	Professional/Industrial Organisation	RTD		
2.	Water Board of Lemesos	WBL	Local Authority	End-user		
3.	IREN Aqua Gas S.p.A.	IREN	Joint Stock Company	End-user		
4.	SONEDE International	SONEDE	Professional/Industrial Organisation	End-user		
5.	COMETE Engineering	COMETE	Professional/Industrial Organisation	RTD		
6.	Alexandria Water Company	AlexWaterCo	Public Administration	End-user		
7.	Aqaba Water Company W.L.L.	AWC	Implem. Agency, Commercial Org.	End-user		
8.	Signal Generix Ltd	SG	Commercial Org.	RTD		
9.	Department of Hydraulic Engineering and Environmental Application	UNIPA	University	RTD		

- A. Contribute to the sustainability of public services by achieving a more efficient use of water resources in the URBAN areas;
- B. Build a cooperation framework between stakeholders of water services in EUMC and MPC to foster initiatives for improving the efficiency of water networks;
- C. Training & dissemination of the best practices in NRW management among the Mediterranean utilities/consultants.

- Limited availability of Regional Water (a precious resource) due to increased demand, especially in the urban areas
 - Rapid population growth in the urban areas
 - Water intensive economic activities
 - Unsustainable water use practices and Water losses.
- Technologies and Methodologies are available, however there is:
 - Missing integration of existing technologies;
 - Lack of analysis of water consumption and losses in the Mediterranean;
 - Insufficient training of water practitioners;
 - Lack of case studies in the Mediterranean Basin.

- Application of international best practices to evaluate and control water losses (leakage and commercial loss) in the selected pilot areas;
- Development of a Manual of Best Practice for reducing commercial water losses;
- Water utilities staff increased knowledge and capacity to reduce water losses, with benefits in operational and financial terms;
- Wide dissemination of best practice to control and manage water losses;
- Project methodology and tools reach wide group of stakeholders in the participating countries and in other Mediterranean countries;
- Consolidated partnership that can collaborate in future projects.



- Task 1 Project launch and implementation of preparatory actions
- Task 2 Pilot Projects (5 sites/Water Utilities)
- Task 3 Capacity Building
- Task 4 Dissemination
- Task 5 Project Management

Task 2 – Pilot sites

- Development of 5 parallel pilot projects:
 - Alexandria (Egypt)
 - Aqaba (Jordan)
 - Tunis (Tunisia)
 - Lemesos (Cyprus)
 - Genova (Italy)

Project Structure – Task 2 Pilot Projects

- Purchasing and renting of needed equipment for Leakage and Automatic Meter Reading of DMAs
- Installation of Active Leakage Control systems
- Water Loss calculation for the pilot DMAs
- Provide training to water operators on the calculation/estimation of Non Revenue Water components
- Evaluation of physical losses and active leakage control
- Evaluation of commercial losses

TASK 2 – Pilot Projects

Physical Leakage

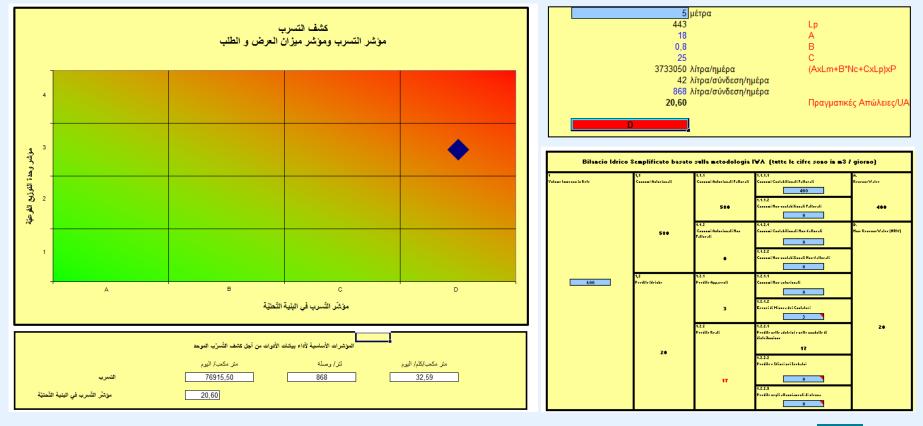
- Breaks in mains and service connections
- Leakage from reservoirs
- Background losses (valves, not detectable small leaks)

Apparent Losses

- Unauthorized use
- Illegal Connections
- Errors in meters and/or out of order meters
 MEG Mediterranean Engineering Group 27-28 November 2014, Rome

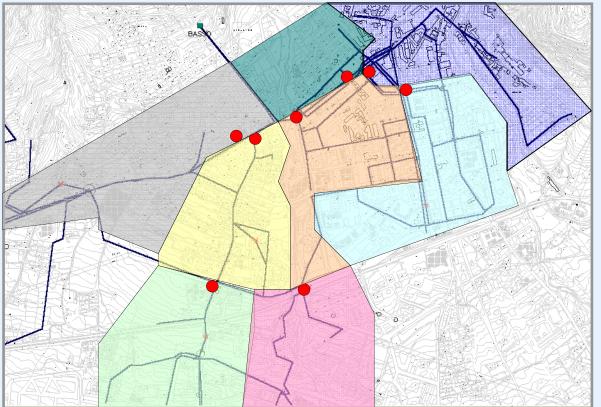
Water Audit (IWA Methodology)

Simplified Water Balance using the IWA methodology (all figures in m3)					
Period: 2/1/2013 to 2/5/2013					
1 Distribution Input	1.1 Authorised Consumption	1.1.1 Billed Authorised	1.1.1.1 Billed Metered Consumption 17671	A. Revenue Water	
Volume		Consumption 17671	1.1.1.2 Billed Un-metered Consumption	17671 63.61%	
	17671	1.1.2 Unbilled Authorised Consumption	1.1.2.1 Unbilled Metered Consumption 0	B. Non- Revenue	
		0	1.1.2.2 Unbilled Un-metered Consumption 0		
27782	1.2 Water Losses	1.2.1 Apparent Losses	1.2.1.1 Unauthorised Consumption 88.36		
		971.905 3.50%	1.2.1.2 Customer Metering Inaccuracies 883.55	10111 36.39%	
	10111	1.2.2 Real Losses	1.2.2.1 Leakage on Transmission and/or Distribution Mains 8517.095		
		9139.095 32.90%	1.2.2.2 Leakage and Overflows at Utility's Storage Tanks		
			1.2.2.3 Leakage on Service Connections 622		

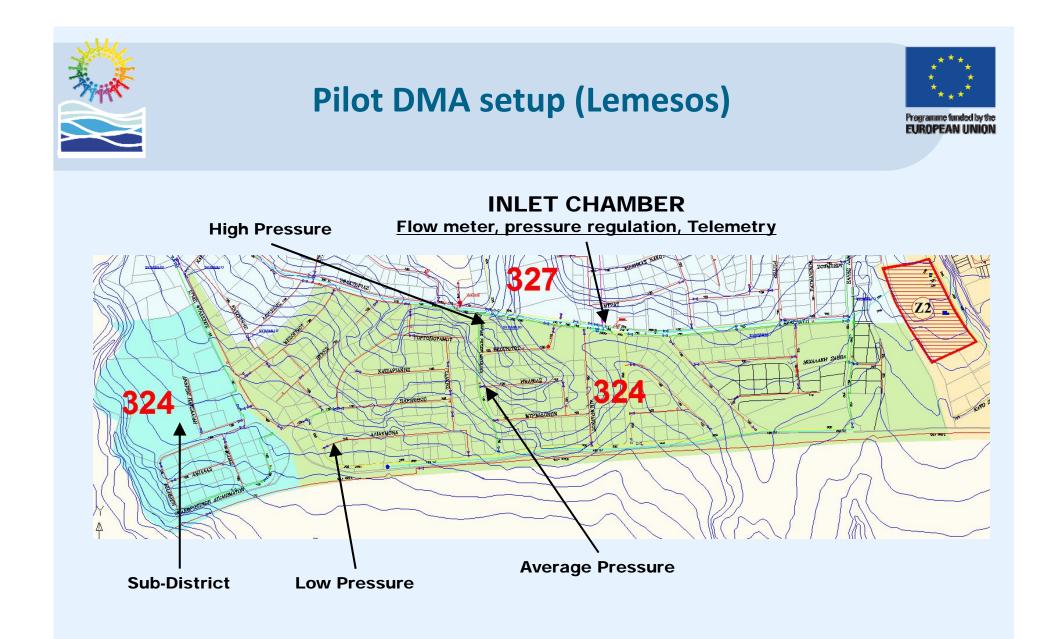


Water Audit (IWA Methodology)

Spread sheet for calculating Water Losses and Leakage Performance Indicators - Available in English, Arabic, Greek and Italian



Active Leakage Control Methodology

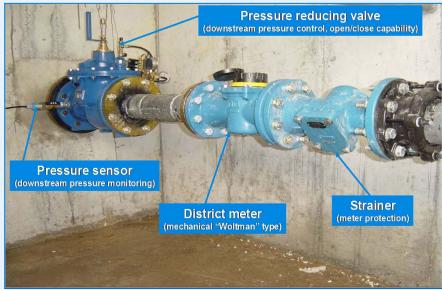


Permanent sectors Closed boundaries Single supply pipe Flow meter on inlet Quantify leakage in each DMA

Locate leaks

Pilot Preparatory Activities

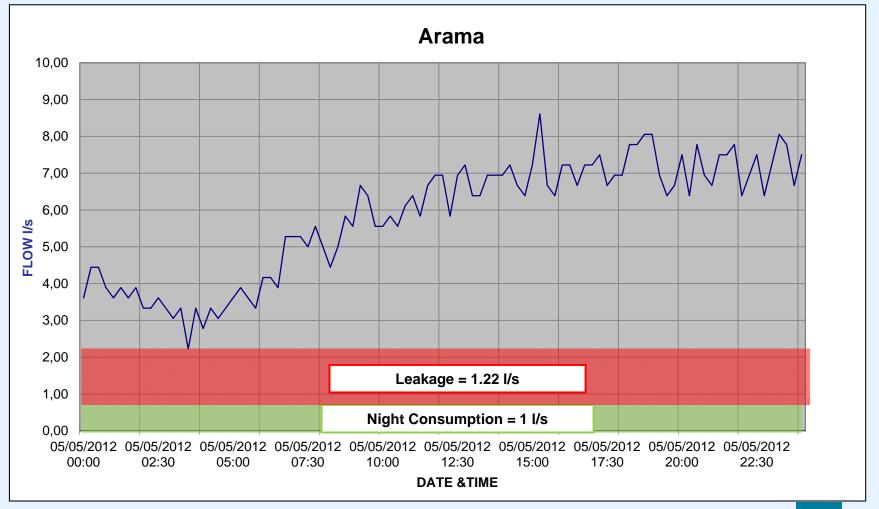
- Selection of the Pilot District Metered Area (1,000-3,000 users)
- Set up of the pilot DMA
 - field surveys and network mapping
 - Boundary valve survey aimed at verifying their tightness
 - Installation of flow and pressure meters



Pilot Preparatory Activities

- 1. Procurement of equipment
 - Flow and pressure monitors, data loggers, AMR, Unaccounted Flow Reducers, leakage detection equipment, PRVs
- 2. Civil works for the construction of chambers to install Flow Meters, PRVs, etc.

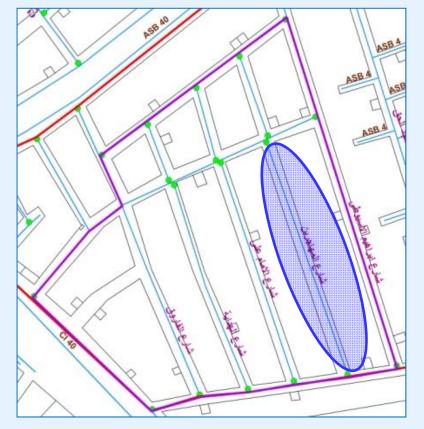
MEG Mediterranean Engineering Group 27-28 November 2014, Rome



Minimum Night Flow Analysis

Evaluation of Real Losses

- Leakage pre-location using sounding, noise logging or step testing
- Leakage pinpointing using acoustic equipment (correlator, ground microphone)
- Continuous monitoring of DMA inlet during leaks repair to check reduction in MNF



Evaluation of Commercial Losses

- Creation of a small sub-district with less than 100 users
- Leaks repair inside sub-district
- Installation of an accurate inlet flow meter and comparison with accumulated customer meters readings
- Replacement of customers old meters with new meters
- Evaluation of Commercial Losses
 recovery

Performance Indicators

	AWC	AWCO	SONEDE	IREN Genova	WBL –Lemessos
	Aqaba Pilot	ARAMA Pilot	Gammarth 90	Leamara	Sub Area 324
N° Consumers/Km	91	233	65	79	46
Input Volume (I/s)	22.9	6.54	26	24.72	2.75
Leakage from MNF (I/s)	6.59	0.71	5.0	3.0	0.70
Leakage from WB (I/s)	6.53	0.81	4.2	3.1	0.88
Real Losses per connections from MNF (l/conn./day)*	838	51	266	399	168
Real Losses per lengh of mains from MNF (l/sec/Km)*	0.27	0.16	0.20	0.38	0.11
N° leaks repaired	23	-	-	6	2
Recovered water from leaks repair(l/s)	5.56	-	-	-	0.56
Recovered water from PRV (I/s)	-	-	0.2	-	-
Total Recovered water (l/s)	5.56	-	-	0.37	0.56
Water Consumption (I/s)	13.00	5.02	9.76	20.86	1.87
Meters Error (% of Consumption)**	19%	16.0%	4.7%	3.5%	5%
Unauthorised Consumption (l/s)	1.48	-	0	0.0625	0,01

- Report describing the field activities for setting up the District Metering Area (DMA) in each pilot project (1,000-3,000 users)
- **Spreadsheet to calculate water losses and instructions on its use (**water balance, components of Non Revenue Water) produced in English and translated into the languages of the end-users (Italian, Greek and Arabic)
- Report describing the activities of leakage control carried out in each pilot districts (Water savings, economic intervention with active leakage control and pressure management, Flow/pressure analysis)
- Manual of Best Practice for reducing commercial losses (Conclusions drawn from the experimentation of automatic Meter Readers in the five pilot projects, the errors of existing meters, impact of customers' tanks on consumption patterns, measures to reduce customers' meters under-registration, the benefits of AMR, and devices to reduce unmeasured flows, Measures to prevent unauthorized consumption).

Outcomes

Planned Project Outcomes	No. of training courses achieved	Location
6 Training courses for MPC partners	6	•2 in Alexandria•2 in Tunis•2 in Aqaba
3 Training courses for EU partners	4	1 in Lemesos2 in Genoa (1 extra)1 in Athens
2 Exchange visits	2	1 in Reggio Emilia1 in Lemesos

Training Courses for MPC partners

No	Торіс	Location	Reporting period
1	Water Balance	AWCO, Alexandria	M5 - Apr 2012
2	Leakage Control Technologies	SONEDE, Tunis	M7 - June 2012
3	Tests for evaluation of commercial losses & AMR	AWC, Aqaba	M13 - Dec 2012
4	International Best Practices	AWCO, Alexandria	M18 - May 2013
5	Advanced Leakage Control Technologies	SONEDE, Tunis	M25 - Dec 2013
6	Project results in the MPC	AWC, Aqaba	M30 - May 2014

27

Training Courses for EU Mediterranean partners

Νο	Торіс	Location	Month
1	International Best Practices	IREN, Genova	M10 - Sep 2012
2	Advanced Leakage Control Technologies and case studies	WBL, Lemesos	M20 - Jul 2013
3	Advanced Leakage Control Technologies and case studies	IREN, Genova	M24 - Nov 2013
4	Final Project results and tools for Water Loss Management	UNIPA, Palermo	M36 - Nov 2014
	editerranean Engineering Group ovember 2014, Rome	28	SGI

Exchange visits

No	Торіс	Location	Reporting period
1	1 st Exchange visit	IREN Reggio Emilia	M6 - May 2012
2	2 nd Exchange visit (coupled with 2 nd training course for EU utilities)	WBL, Lemesos	M20 - July 2013

Task 3 – Capacity Building

2nd Exchange Visit in Lemesos, 18 July 2013

MEG Mediterranean Engineering Group 27-28 November 2014, Rome

TASK 4 – Dissemination Activities

- Definition of the **Dissemination Plan**
- Development of the **project website**

www.aquaknight.eu

continuously updated until month 36

- Establishment of the network of stakeholders in the Mediterranean region (continuous growth until the end of the project)
- Production of **dissemination materials**
 - Brochure, leaflet, poster, notice boards, project presentations, project logo
 - Project Newsletters published every six months and describing the main project achievements

TASK 4 – Dissemination Activities

- **Dissemination events** 2 international conferences held
 - Participants ~90 in each event
 - Huge local interest
 - Ministries, holding companies, environmental agencies present
- Presentation/participation in other events
 - Fairs, conferences, workshops, etc

- Publications on scientific journals related to project results and achievements and publications of articles about the project
- Clustering activities aimed at creating proper links with other EU projects having similar aims
 MEG Mediterranean Engineering Group

27-28 November 2014, Rome

32

Thank you for your attention!

Giorgio Galli (SGI) giorgio.galli@sgi-spa.it

